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Force-extension curves for a single polymer chain under varying solvent conditions

R. G. Maurice and C. C. Matthai
Department of Physics and Astronomy, University of Wales, Cardiff CF2 3YB, Wales, United Kingdom
(Received 8 July 1998; revised manuscript received 5 May 1999

We show that Langevin dynamics can be used to obtain force-extension curves for a single polymer chain
under varying solvent conditions. We find that the chains obey Hooke-type and Pincus regime beha&ior for
and good solvents. However, in poor solvents a coil-strand coexistence is observed in the equilibrium state and
this leads to a quite different type of deformation beha\[i8i063-651X99)10309-X]

PACS numbds): 36.20—r, 87.15.He

[. INTRODUCTION and performed molecular-dynami@¢lD) simulations of the
stretching of the chain when it is subject to an external ten-

The mechanical properties, deformation behavior, and resile force. MD simulations have the advantage over tech-
laxation of macromolecules or single polymer chains haveliques such as the MC method in being able to observe real
been a subject of some interest in recent years because of fi§1e dynamic behavior, including relaxation times, and they
importance in understanding the structure and function ofilso offer greater flexiblity in estimating the effects of stiff-
cells and muscles. Much useful information about the meness, torsion, etc. In addition, the force-extension curves are
chanical response of polymers and macromolecules can ds0 determined dynamically by the direct application of a
obtained from an investigation of the effect of different force to the ends of a chain. This is in contrast with static
Stretching forces on a simp]e po|ymer chain. ThUS, for exmethOdS, which extend the chain and then allow it to equili'
ample, Perkinset al. [1] have studied the behavior of the brate. It is important to know if both approaches give similar
DNA molecule under flows and its subsequent relaxationfesults. In the next section, we outline the computational
Smith et al.[2] have been able to take measurements of thénethod used in the simulations and then go on to describe
elasticity of single DNA molecules by using magnetic beadsthe results.
Computer simulations afford a relatively simple approach to
determining the microscopic mechanisms responsible for the Il. COMPUTATIONAL METHOD

observed mechanical response. Many of the observed prop- Th ical simulati ‘ db deli
erties of polymer chains may be attributed to topological . € numerica’ simuiations were performed by modefling a

constraints due to noncrossing of chains and can be model gle polymer chain b spherical beads interconnected by

- ; - —1) springs in a three-dimensional space. The monomer-
by the excluded volume interaction. Other properties may b . .
y brop may Jgonomer interactions between all monom@rsnded or not

ciated with the polymer. were described by a composite potential

De Genneq3] and Pincug4] were among the first to V=V 4V 1)
investigate the static properties of polymers subject to an M Tbond:
external force using scaling analyses. Pincus showed that The Morse potential between two monomers labéladd
under good solvent conditions the extension of a chain capijs given by
be described by a Hooke-like behavior only for weak forces.
In the strong force limit, he showed that the extension was V,(rj;)/e= exd —2a(r;—a)]—-2 exg —a(rj;—a)];
related to the force through Zpower law. The latter force-

extension relation, termed the Pincus regime, can be ex- rij<fe,
plained in terms of a “blob” model of the polymer chain, in 2)
which the chain is said to break up into an ideal string of Vu(rijple=0; rj>rg

noninteracting blobs, each of which is made up of a number

of monomers. The nonlinear dynamic behavior of a de-and evaluates the effect of the excluded volume interaction

formed, isolated polymer chain was studied by Shengl. = and monomer attractions through the solventefines the

[5] using Monte Carlo(MC) computer simulations. They minimum of the potential and is, consequently, the initial

were able to demonstrate the different relaxation dynamics ilvond length associated with the polymer. The bead radis,

the different elastic regimes. Wittkogt al. [6] considered is defined through/y(o)=0, and the cutoff radius;, is

the deformation behavior of a single three-dimensional polyiaken to be 1.&5. The parametex was chosen to be 18/ €

mer chain, above and below tl& temperature. Using the was taken in units of the thermal enerdgT, and the dis-

bond-fluctuation model, they found that for poor solvent re-tances are in units of the bead radius.

gimes, the deformation was inhomogeneous and could be The attractive part of the Morse potential is not enough to

represented by a coil-strand coexistence, which became udescribe the strong bonding forces between adjoining beads

stable for large strains. Force-extension relations of polymealong the backbone of the polymer chain. Consequently, ad-

chains have also been derived by Kroy and Hély who  ditional attractive forces are required to form the bead-bead

studied a wormlike chain of arbitrary stiffness. interaction in the chains. This is done through the bonding
In this paper, we have focused on a single polymer chaipotentialV,,,q given by
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The maximum bond length over which this interaction is
nonzero was taken to b&,.,=1.50 and the potential
strength is given byy=30e/o°.

The initial chain configurations were constructed by
means of a random walk along the three-dimensional lattice'e”
and the system was allowed to relax according to the classi

0.2
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cal equations of motions for each bead. One of the difficul- S

ties in performing simulations of realistic polymer chains is

in representing the influence of the solvent. Although this is 0 i 5 5
partially taken into account in the model potential, there is no .

way of varying the solute-monomer interaction without af- T

fecting the monomer-monomer interactions. The inclusion of FIG. 2. Mean square radius of gyration for different chain
explicit solute effects would make the simulation more real—lengths; as' a function of the scaled temperature.
istic and meaningful. However, explicit inclusion of solvent
species atoms would overcomplicate the simulation. Gresi|so enables us to perform dynamic simulations of the force-
and Kremer8] proposed a simple method based on Langeextension curves. It would not be possible to use standard
vin dynamics(LD), which actively took account of the pres- MD to do this, as the introduction of a force would raise the
ence of solvent. Furthermore, it was shown to be as compuemperature of the system and these effects would have to be
tationa”y effective as MC methods for Single chains. In thiSConsidered in a nontrivial way. However, by introducing the
approach, each particle is weakly coupled to a heat bath sgeat bath, a force may be applied directly and the dynamic
that the equations of motion for each bead/monomer becomgmulations performed in the standard manner. The equations
. ) of motion were integrated using the Verlet algorithm with a
r=—VU=Tri+w(t), (4 time step ofst=(e/mo?) Y2 and the system was allowed to
. . relax to find its equilibrium configuration. The relaxed chain
where " represents the viscosity of the solvent amflt) 5 then used as the starting point in determining the force-
describes the random force of the heat bath acting on €acfyensjon relations. This was done by applying tensile forces
monomer. The presence of the heat bath allows for work Q, 1oth ends of the chain and allowing the chain to respond
be done on the systere.g., extensionwithout a corre- 1 e force. The force was then increased in a stepwise
sponding increase in the tgmpe_rat_me(_t) andl’ are con- manner and the process repeated until it was greater than the
nected through the fluctuation-dissipation theorem, thermal forcekT/o. For each force step, the system was
Y — / allowed to equilibrate for 500 000 steps and then sampled for
(wi(1)-wi(t')) = 6ij ot —t")Bkg T, ®  one million gteps to extract the chaia configuration, Fé)he ra-
and ensures that the temperature is kept constant. Note thatdfus of gyration,R,, and the end-to-end distandey, .
I were included without thev term, the system would sim-
ply dissipate and no temperature effects could be addressed.
Thus LD allows us to explicitly introduce solvent effects and As a preliminary to determining the force-extension
curves, we performed the simulations on linear and random

Ill. RESULTS AND DISCUSSION
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FIG. 1. Structure factoB(k), curves forN=60 chain at differ-
ent reduced temperatures. Also shown, for comparision, iStke FIG. 3. Scaled extensions for varying polymer lengths in poor,
for a Gaussian chain, which is found to closely follow the calcu-0, and good solvents as a function of the applied fgieeeduced

lated S(k) in the ® solvent case. units).
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FIG. 4. Scaled extensions for varying polymer lengths as a func-

tion of the applied forcgin reduced units (a) In good solvents

with, for comparision, Hooke's lawdotted ling, the Pincus relation

(dash-dot ling and the FJC mode(full line) results.(b) In ®

solvents with, for comparision, the Hooke’s law redtl line). (b)

walk generated free-standing chains for a range of tempera-
tures to identify the temperatures associated with the poor,
®, and good solvent regimes. The structure factor should
satisfy the relation

1
S(k)~k =, <1 <3 (6)

such thatr should be 0.59 for good solvents and less than

0.5 in poor solvents. At th&® temperature, the attractive
interaction compensates for the repulsion in such a way as to

give near ideal chain behavior with=0.5. As shown in Fig.

1, we found that for reduced temperatuiies=kgT/e equal

to 2.25, 1.25, and 0.75; took the values 0.61, 0.5, and 0.33,
respectively, which correspond to the three different solvent
conditions. This demonstrates the applicability of this simu-

lation method for modeling polymer behavior in varying sol-

vent conditions simply by varying the reduced temperatures. ©
We have also calculated the dependence of the mean square

radius of gyrationR, for chains of different lengths overa g5 Change in conformation &f= 200 polymer chain ira)
range of temperatures, and this is plotted in Fig. 2. Theoor solvent forf =0, 0.6, 0.9, 1.1, 1.3b) ® solvent forf=0, 0.1,
crossing point of all the curves identifies tlietemperature. 0.5, 1; and(c) good solvent forf=0, 0.1, 0.5, 1f is in units of
It may be noted that for longer chains, the crossover fromk,T/o.
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25 To get a better understanding of the behavior of chains in
poor solvent conditions, we have charted the change in the
equilibium chain conformations as the applied force is in-

creased. For purposes of clarity, it is best to observe one of

.gm the larger chains considered, and these are shown in Fig. 5.
< From these pictures, it is clear that the difference in the ob-
2 served behavior in poor solvents may be attributed to the
s initial closed form of the polymer. For each polymer chain, a
N O

f

minimum force is required before this closed configuration
can open. At this critical force, there is a sudden near-
spontaneous uncoiling of the polymer, after which the exten-

0 sion appears to take the same form as for the other solvent
8 120 180 20 conditions. This is in the model-dependent regime. The per-
N sistence of the coil-like region of the chain even for quite

large forces suggests that whereas the increased temperature
in good solvents is sufficient to overcome the strong bonding
forces, it is not the case in poor solvents. In good solvents,
Ehe extensions propagate through the whole chain, whereas
In poor solvents there is a tendency for the coil to unravel

FIG. 6. Plot of the square of the critical ford(%,, vs the number
of monomersN.

poor to good solvent conditions is faster. This is consisten
with R;~N", which we found to hold for all the chain

force-extension relation. This was done for chain lengdths
=80, 100, 120, 140, 160, and 200 in all three solvent con
ditions. The nature of the solvent on the force-extensio
curve may be seen by examining the results for the scale,

Ienlgtrgﬁ,<RN)/N, ?'SpI?yEd 'nt';'g' 3 inimal extensi t.the coiled state it might be expected to form fewer bonds,
n e poor solvent case, there Is minimal extension un Ik/\/ith the number varying as the gyration radius of the poly-
the applied force reaches some critical value, Whereupo%er leading tof ,~N95. From the plot off2 versusN in Fig
X i . i ) c , < .
rer s & sudd poweraw cresse i te exenson, BYS DS e L T LR R B e e
’ 9 ' P yby the simulation results. However, this agreement is not

very similar behavior, which for small applied forces appearsi‘ully conclusive and the results could also point to a linear

to be Hooke's law type linear behavior. This is consistentr lationship. This ambiguity in determining the true relation-
with the results of de Gennes and Pincus, who showed tha P guity 9

the force extension relation was linear forsolvent condi- - Ip i due to the sparsity of points and to the eror in deter-
. ; . : . mining f.. Once the chain has unraveled, the force, which
tions, but which displayed a nonlinearpower law for in-

termediate extensions in good solvents. For much larger e>§—y now is very strong, simply extends it, as in the good
tensions {>2kgT/), the relationship tends to be model olvent case. We have also examined the change in the lat-

o eral size of the chains and found that there is a nonlinear
specific.

. . . . reduction with force for intermediate to large stresses.
To examine the force-extension curves in more detail, we
have compared them with the analytical results, viz., the
Hooke’s law for small extensiong Ry,

critical force will of course depend on the number of such
bonds that need to be broken. If the coil were a two-
imensional structure, the number of bor(dgearest neigh-
or) will vary linearly with the size of the chain. However, in

IV. CONCLUSION

(ARy)=

2
_a>f We have demonstrated that molecular dynamics gives a
kgT/ "’ very flexible method of modelling polymers in different sol-

) ] ) ) . vent conditions. We have also shown that the application of
and the Pincus type nonlinear behavior for intermediate exy | angevin dynamics approach is a very powerful method

tensions, that takes solvent effects into account and can be used effec-
af |- tively to determine the response of polymers to an external

(ARy)=Nal — ' applied force in a dynamical fashion. The calculated force

kgT extension curves are found to be in very good agreement

with the results of analytical models. We have found that the

and these are shown in Fig. 4. In good solvents, the extemsolymer conformations under the different solvent condi-
sion deviates from the Hooke’s law linear behavior for evenijons match those obtained by Wittkepal.[6] using Monte
the smallest applied forces, but follows the Pincus relationcarlo techniques. We can thus confirm the so-called coil-

for up to XgT/o. It may be noted that the freely jointed strand coexistence of polymer chains at low temperatures.
chain (FJO model[9] could also be used to describe this

region. For forces greater than this, the calculated extensions
lie between the Pincus and FJC models. By contrast, the
extension in the® solvent follows Hooke’s law up td

~kgT/o. R.G.M. acknowledges financial support from the EPSRC.
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